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a b s t r a c t 

In the information spreading mechanism of social networks, the influence propagation of information sources 
often has different effects on different users. How to effectively suppress the negative effects is particularly impor- 
tant. In the case of unknown network propagation principle, this paper introduces the idea of swarm intelligence, 
which utilizes the positive feedback mechanism of ant colony to simulate the propagation of negative influence, 
and finds a set of high-value and low-cost suppression nodes. On this basis, the graph embedding technique is 
used to obtain the new relationships between nodes in the network, and the new relationships between the nodes 
are used as heuristic information for the ant colony algorithm. Experiments show that our algorithm can not only 
find the set of inhibitory nodes with limited cost, but also effectively limit the spread of negative influence in the 
network compared with other algorithms. The research of this paper can not only enrich the theoretical research 
results of influence maximization, but also play an important role in the analysis of network topology, as well as 
in the fields of epidemic prevention and control, rumor propagation and so on. 
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. Introduction 

In recent years, with the vigorous development of online social
etworks, thousands of people produce unprecedented massive data
hrough various forms of medias, and the data present the trend of multi-
ource and isomerization. At the same time, the popularity of online so-
ial networks has aroused people’s great interest in information spread-
ng. A piece of information may be rapidly popularized through ”word-
f-mouth ” among friends in the network. In the information spreading
echanism of social networks, information spreading among different
sers is often affected by the influence of users [1] . Therefore, it is very
ecessary to carry out social network analysis research, which has at-
racted extensive attention from computer science, physics, epidemiol-
gy, and other fields [2,3] . 

Influence maximization (IM) is an important research topic in social
etwork analysis, which aims to find the key subset of users to max-
mize influence propagation under a specific propagation model [4,5] .
ts task is to select 𝑘 users (also known as seed set) to spread information
hrough the contact between friends in social networks, and these users
an affect a large part of users of social networks as much as possible. For
xample, in the case of viral marketing, the company hopes to increase
he sales of its products by relying on ”word-of-mouth ” recommendation
nd maximize the publicity effect by tapping the influence of important
ustomers in the network [6] . Influence blocking maximization (IBM)
∗ Corresponding author. 
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s an extension and expansion of the traditional influence maximization
roblem. Different from the traditional influence maximization, IBM is
ainly applied to the case where there is competition between the nodes

n the network. In previous studies, most researchers have solved the
roblems of non-competitive networks. In non-competitive networks,
here is no competitive relationship between users, but in the real world,
here are a variety of competitive relationships between users, and the
ompetitive spreading of a variety of information is very common in
he network [7,8] . In the process of influence propagation, there are
ositive influences such as support and praise, as well as negative influ-
nces such as bad comments and rumors, of which many negative news
pread rapidly and wantonly in the network. The COVID-19 outbreak
as generated a large number of rumors on the Internet and has been
idely spread among users. For example, ”Yansong Bai, host of CCTV
ews Channel, will host a special program on COVID-19 at 9:30 p.m.,
cademician Nanshan Zhong will be invited to introduce the situation
elated to the epidemic. ”. For a time, WeChat groups, circles of friends,
orums and even some big V bloggers were forwarding the news. Later,
t was confirmed that the news was a rumor. It can be seen that neg-
tive influence has the characteristics of short propagation time, fast
ropagation speed, and wide range of influence. 

Therefore, it is especially important to take some measures to stop
he spread of negative information such as rumors and to trace the
ource of rumors. This is of great theoretical importance for analyzing,
ay 2022 
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nderstanding and predicting the topology, function and dynamic
ehavior of complex networks, providing theoretical support for virus
ropagation, public opinion control and disinformation control in
overnment departments, and providing strong theoretical support
nd practical guarantee for social security, stability and economic
evelopment [9,10] . To summarize, our work makes the following
ontributions: 

(1) The idea of swarm intelligence is introduced, and the positive
feedback mechanism of ant colony is used to simulate the spread
of negative influence. 

(2) Graph embedding technology is used to reconstruct the relation-
ship between nodes in the network. 

(3) This method can select cost-effective suppression nodes with lim-
ited cost, and can effectively prevent the spread of the node’s
negative influence in different communities. 

(4) This research can play an important role in the fields of epidemic
prevention and control, rumor spreading and so on. 

. Related works 

.1. Traditional methods 

Information spreading models are the basis for the study of influence
aximization. Domingos and Richardson [11] first studied the influ-

nce propagation on social networks and analyzed it using data mining
elated technologies. Kempe et al. [12] formulated the influence maxi-
ization problem based on independent cascade model (IC) and linear

hreshold model (LT), and proposed a greedy algorithm similar to the
ptimal result (1 − 1∕ 𝑒 ) . In recent years, these two probability models
ave become important models to study influence propagation. Many
lgorithms designed for the influence maximization problem and their
ariants are based on IC or LT. In the influence propagation process of
ocial networks, the negative influence propagation suppression maxi-
ization problem is actually to prevent the influence propagation of its

ompetitive entities by selecting some seed nodes. He et al. [13] called
his problem the influence blocking maximization problem. Also, they
roved that the objective function of IBM is submodular in the compet-
tive linear threshold model and that the greedy algorithm can achieve
he optimal solution. 

However, the time consumption of greedy algorithm will increase
harply with the increase of the network scale. Therefore, Leskovec et al.
14] proposed the CELT (cost effective lazy forward) algorithm which
akes into account the decreasing edge payoffs, and they excluded the
odes with small edge payoffs in the previous round when calculating
he edge payoffs in the next round, effectively reducing the calculation
ime of the greedy algorithm. Tong et al. [15] found that the algorithm
ombining the classical greedy algorithm and Monte Carlo simulation
an too long, and proposed a random approximation algorithm to im-
rove the operation efficiency while ensuring the performance. Because
he greedy algorithm is slow and not scalable, Wu and Pan [16] de-
igned a heuristic algorithm according to the maximum influence tree
tructure, which runs much faster than the greedy algorithm although
ts effect is close to that of the greedy algorithm. 

.2. Methods based on node and edge importance 

Another important approach in IBM’s study of the problem is by
locking nodes and links that have played an important role in the
pread of negative information [17] . The goal of this type of approach is
o select and remove 𝑘 key nodes in the social network so that the spread
f negative information can be blocked to the maximum extent possible
fter removing the seed set. Khalil et al. [18] proposed a greedy edge-
eletion-based algorithm to address the problem of rumor blocking, that
s, to remove a set of 𝑘 edges such that rumor spread is minimized
nder the LT model. Zhang and Prakash [19] proposed three effective
2 
olynomial-time heuristic algorithms, DAVA, DAVA-prune and DAVA-
ast, which can help public health experts to make real-time scenarios
ased on the current epidemic distribution. Arazkhani et al. [20] pro-
osed the Centrality_IBM algorithm, which uses three different central-
ty strategies, including closeness centrality, betweenness centrality and
egree centrality to find 𝑘 positive nodes to prevent the propagation
f negative influence. Lee et al. [21] proposed the influence distribu-
ion redirection algorithm by analyzing the potential influence trend of
odes in the process of influence diffusion. Peng et al. [22] proposed
 new containment model based on an influence maximization algo-
ithm. The model first assesses the influence of nodes by introducing a
ocial relationship graph, then finds the most influential nodes using the
lection system, and finally takes immunization measures for the top 𝑘
nfluential nodes to prevent the spread of negative influence. Kuhlman
t al. [23] proposed an edge-covering heuristic algorithm under the dis-
rete dynamical system model. Xue et al. [24] argued that convincing
nfluential people to act as initial spreader is costly and difficult and
roposed a risk-aware metric to identify the most effective spreaders in
eal networks based on assumption that the activation of large-degree
odes carries a higher risk than that of small-degree nodes. 

.3. Methods based on community structure 

At present, there is still a part of the work on the network-based
ommunity structure. Arazkhani et al. [25] proposed a method to find
 good candidate subset of nodes for diffusion of positive information
sing fuzzy clustering and concentration measure. To improve the effi-
iency of the IBM algorithm, based on the locality of influence diffusion
n social networks, Lv et al. [26] proposed a community structure-based
BM algorithm CB_IBM. On the basis of the Ising model, Wang et al.
27] proposed a dynamic negative influence diffusion model, which in-
orporates the global negative influence prevalence and individual ten-
encies. Zhu et al. [28] found that location information can play an
mportant role in influence propagation and proposed two heuristic al-
orithms LIBM-H and LIBM-C based on quadtree index and maximum
ree structure. Considering that bridge ends often have important values
n the community structure, Fan et al. [29] built a reverse search tree
o find all nodes affecting bridge ends and found the minimum number
f key node sets by transforming it into a minimum set coverage prob-
em. Gong et al. [30] proposed a local search strategy based on similar
odes in the community, which can effectively accelerate the conver-
ence of the algorithm. Li et al. [31] proposed an influence index to
easure the community diversity, and then proposed greedy and pre-

ious algorithms to calculate the influence maximization. Experiments
how that this method can also achieve good results in networks with
nclear community structure. In order to solve the challenge of finding
mportant nodes in a large social network, Sivaganesan [32] proposed
n interest-based parallel social behavior algorithm. This algorithm in-
egrates user behaviour and interests and enables parallel computation
hrough community structures, improving the computational efficiency
f real-world large-scale social networks. 

From the current research status at home and abroad, it can be seen
hat in the research of negative influence suppression, traditional meth-
ds treat the characteristics of positive and negative influence propa-
ation equally. However, in the real environment, negative influences
pread faster and more widely than the spread of positive influences.
n addition, some of these existing methods ignore the cost of delet-
ng important nodes, and some algorithm parameters need to be man-
ally determined in advance. Therefore, in the process of suppressing
he propagation of negative influence, how to measure the propagation
peed and scope of the negative influence and the comprehensive evalu-
tion of the suppressed nodes is particularly important. This paper com-
ines the idea of graph embedding in deep learning to map and recon-
truct the network from high-dimensional to low-dimensional, and uses
 group of optimization algorithms with positive information feedback
nd heuristic search characteristics to measure the influence of online
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Fig. 1. Schematic diagrams of negative influence propagation and suppression. Among them, the red nodes represent the negative influence nodes in network 
communication, the green nodes are the healthy nodes not affected, and the pink nodes are the nodes affected by the negative influence. Blue nodes are the selected 
suppression nodes, and light blue nodes are the nodes that can be covered by the suppression nodes. (a) The initial network state when the negative influence is not 
propagated; (b) As time changes, the network state after negative influence propagation; (c) The state after adding suppression nodes in the original network; (d) 
The network state in which nodes prevent the propagation of negative influence. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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ocial networks to find high value, low-cost key node set, design an ef-
ective method to suppress the spread of negative influence. 

. Problem modeling 

.1. Description of the problem 

Online social network can be regarded as a mapping of people’s real
ocial life on the Internet. In this paper, the influence propagation of
ocial network is simulated with the structure of graph. Each user un-
er social relationship is regarded as a node in the network graph, and
he relationship between different users is connected with edges. In this
ay, the social network can be defined as a graph composed of nodes
nd edges. The influence propagation diagram of different types of nodes
n the network is shown in Fig. 1 . 

As can be seen from Fig. 1 , when the original network does not sup-
ress the negative influence, most of the healthy nodes in the network
ill be infected by the negative influence. However, after selecting some

uppression nodes, it can block the spread of negative influence in the
etwork and ensure the healthy development of the network. 

In terms of mathematical definition, the network can be defined by
 = ( 𝑉 , 𝐸) , where 𝑉 represents the set of all nodes in the network and 𝐸

epresents the set of edges between these nodes. From the perspective of
nformation spreading, the nodes in the graph generally have two states:
nactive state and active state. Only the nodes in the active state have
he ability to affect other nodes. A node in the inactive state can only
e activated by the neighbor node in the active state if it wants to be
onverted to the active node. If there are two nodes 𝑢 and 𝑣 in social
etwork 𝐺, and 𝑢 and 𝑣 are not the same node, ( 𝑢, 𝑣 ) ∈ 𝐸 indicates that
here is a connecting edge between 𝑢 and 𝑣, and the influence can be
irectly transmitted between them, and the propagation probability is
xpressed by 𝑝 . Where, 𝑛 represents the total number of nodes in network
, i.e. 𝑛 = |𝑉 |, and 𝑚 represents the total number of edges in network 𝐺,

.e. 𝑚 = |𝐸|. Then, the influence maximization problem is transformed
nto finding 𝑘 seed nodes in 𝐺, so that they can prevent the negative
nfluence of nodes from spreading in the network. 

In addition, if we want to select some nodes to suppress the spread
f the negative influence of the nodes in the network 𝐺, we need to pay
 corresponding price, because the cost of each node is different. For
xample, a company wants to expand its influence through celebrity
ndorsements, but since each celebrity’s appearance fee is different and
he company’s advertising expenses are limited. Therefore, a reasonable
trategy needs to be devised to expand the influence of the company.
n this paper, we set 𝑐𝑜𝑠𝑡 ( 𝑣 ) to be the cost of node 𝑣 and the total cost
f cost to be 𝑄 . Let 𝐼( 𝑆 𝑁 

, 𝑆 𝑃 ) be the expected value of the number of
ertices activated by the negative seed set when 𝑆 𝑃 is the negative seed
et and 𝑆 is the positive seed set. Therefore, the purpose of the negative
𝑁 

3 
nfluence suppression problem under the cost constraint is to select an
ptimal positive seed set 𝑆 

∗ in the vertex set 𝑉 ∖ 𝑆 𝑁 

, so that 𝐼( 𝑆 𝑁 

, 𝑆 

∗ ) is
he smallest. 

 

∗ = arg min 
𝑣 ∈( 𝑉 ∖ 𝑆 𝑁 ) 

𝐼( 𝑆 𝑁 

, 𝑆 𝑃 ) , 
∑
𝑣 

𝑐𝑜𝑠𝑡 ( 𝑣 ) ≤ 𝑄 (1) 

.2. Influence diffusion model 

Kempe et al. [12] proposed that the famous independent cascade
odel can be regarded as a probability model with better universality

nd flexibility. Therefore, this paper uses it as the communication model
f negative influence communication inhibition in the process of influ-
nce communication. In the independent cascade model, the node has
nd only has two states, active state and inactive state. The active node
epresents the user who has been affected by negative information and
ries to spread to other nodes. An inactive node represents a user who
as not received a negative message or has received a negative message
ut ignored it. 

The basic assumption of the model is that whether the behavior of
ode 𝑢 trying to activate its adjacent node 𝑣 is successful or not is an
vent with a probability of 𝑝 ( 𝑢, 𝑣 ) . And the probability that a node in
n inactive state is activated by a neighbor node that has just entered
he active state is independent of the activities of other neighbors who
ave tried to activate the node before. In addition, any node 𝑢 in the
etwork has only one chance to try to activate its neighbor node 𝑣 . No
atter whether it is successful or not, although 𝑢 itself remains active

n the future, it no longer has influence. This kind of node is called non
nfluential active node. The propagation process of information in the
ndependent cascade model can be defined as the following three steps:

1) At the initial stage of information spreading, that is, at time 𝑡 0 , a few
active nodes will be set in the network as the initial active node set
𝑆 𝑁 

. All nodes in 𝑆 𝑁 

are active and all nodes except 𝑆 𝑁 

are inactive.
2) In the next time 𝑡 > 0 , the node activated at time 𝑡 − 1 will attempt

to activate the inactive neighbor node with probability 𝑝 ( 𝑢, 𝑣 ) , and
the attempt of node 𝑢 to activate the inactive neighbor node 𝑣 is
independent of the attempts of other active nodes 𝑣 . If node 𝑣 is
successfully activated, node 𝑣 will be converted to the active state at
time 𝑡 . 

3) When no node in the graph changes state at a certain time, the prop-
agation process of the independent cascade model ends. 

. Methodology 

.1. Basic idea of algorithm 

In the scheme design of negative influence propagation suppression,
he key is how to simulate the propagation path of negative influence
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Fig. 2. Schematic diagram of the propagation 
path of ants. 

Table 1 

The framework of Ant Colony Optimization algorithm 

based on Graph embedding. 

Algorithm 1 ACO based on graph embedding(ACO-GE) 

Input : Adjacency matrix 𝐴 
Maximum number of iterations 𝑁𝐶

Number of ants 𝑚 
Length of ant selection path 𝐿 
Negative influence node set 𝑆 𝑁 

Output : Suppress node set 𝑆 𝑃 
Begin 

1. Parameter initialization: 𝜏 ← 𝐴, 𝜂 ← 𝐷𝑒𝑒𝑝𝑤𝑎𝑙𝑘 ( 𝐴 ) ; 
2. for 𝑖 = 1 to 𝑁𝑐 do 
3. for 𝑘 = 1 to 𝑚 do 
4. Path selection: 𝐿 𝑣 ∈𝑆 𝑁 

( 𝑘 ) ← 𝑝 𝑡 
𝑢𝑣 
( 𝑘 ) , 𝑝 𝑡 +1 

𝑢𝑣 
( 𝑘 ) , … , 𝑝 𝑡 + 𝐿 

𝑢𝑣 
( 𝑘 ) ; 

5. Evaluation path: Δ𝜏𝑡 
𝑢𝑣 
( 𝑘 ) ← 𝑓 ( 𝐿 𝑣 ∈𝑆 𝑁 

( 𝑘 )) ; 
6. Pheromone update: 𝜏𝑡 

𝑢𝑣 
← Δ𝜏𝑡 

𝑢𝑣 
( 𝑘 ) ; 

7. end for 

8. end for 

9. Node candidate set: 𝑆 𝐶 ← 𝑣 ∈ 𝐿 1 ( 𝑘 ) , 𝐿 2 ( 𝑘 ) , … , 𝐿 𝑁 ( 𝑘 ) ; 
10.Suppress node set: 𝑆 𝑃 ← 𝑟𝑎𝑛𝑘 ( 𝑣 ) ← 𝑐𝑜𝑠𝑡 ( 𝑣 ) , 𝑣 ∈ 𝑆 𝐶 
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odes and mine the information of key nodes in the network, and finally
omplete the selection of suppression nodes based on this. This paper
ainly introduces the idea of swarm intelligence and graph embedding,

nd uses the positive feedback mechanism in ant colony algorithm to
elect the suppression nodes. 

The main steps of the algorithm are as follows: firstly, the hidden in-
ormation features of the network are learned by using Deepwalk graph
mbedding technology to obtain the potential features of the nodes. On
his basis, the similarity between different nodes is measured and used
s a heuristic factor in the ant colony algorithm. Next, ants will simulate
nd iterate the influence propagation path from the negative influence
ode to form a key propagation path set. Finally, the important nodes
n the critical paths are obtained, and the node costs are combined to
ake the selection of suppression nodes. The algorithm framework is

hown in Table 1 . 

.2. Detailed steps of the algorithm 

.2.1. Calculation of critical path of ant colony algorithm 

In this step, we set the number of ants as 𝑚 and the set of negative
nfluence nodes as 𝑆 𝑁 

. At time 𝑡, we randomly scatter ants on the neg-
tive influence nodes, and the ants choose the path according to the
robability 𝑃 𝑡 

𝑢𝑣 
( 𝑘 ) . After time 𝑡, the ant completes the traversal of the

hole network from the negative seed node 𝑆 and forms a path, which
𝑖 

4 
s represented by 𝐿 𝑖 ( 𝑘 ) . The schematic diagram of ant selection path is
hown in Fig. 2 . 

.2.2. Calculation of critical path of ant colony algorithm 

We set 𝜏𝑡 
𝑢𝑣 

as the pheromone between nodes 𝑢 and 𝑣 at time 𝑡, and
𝑡 
𝑢𝑣 

as the heuristic factor between nodes to reflect the expected degree
f ants from node 𝑢 to node 𝑣 . In the initial stage, the pheromone on
ach edge can be positively correlated with the weight on the edge.
e introduce graph embedding technology to measure the importance

f the edge. The specific steps will be introduced later. Next, the ant
elects the path according to the following probability formula: 

 

𝑡 
𝑢𝑣 
( 𝑘 ) = 

⎧ ⎪ ⎨ ⎪ ⎩ 

( 𝜏𝑡 𝑢𝑣 ) 
𝛼 ⋅( 𝜂𝑡 𝑢𝑣 ) 

𝛽∑
𝑙∈𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑘 

( 𝜏𝑡 
𝑢𝑙 
) 𝛼 ⋅( 𝜂𝑡 

𝑢𝑙 
) 𝛽 𝑣 ∈ 𝑎𝑙 𝑙 𝑜𝑤𝑒𝑑 𝑘 

0 𝑣 ∉ 𝑎𝑙 𝑙 𝑜𝑤𝑒𝑑 𝑘 

(2)

Where 𝑎𝑙 𝑙 𝑜𝑤𝑒𝑑 𝑘 is the node set that the 𝑘 th ant can select, and 𝛼
nd 𝛽 are the parameters that affect the node selection by pheromone
nd heuristic information on the regulation path, respectively. We can
ee that when 𝛽 = 0 , it shows that the path selection process of ants is
nly related to pheromones, that is, it meets the rules of the traditional
nfluence propagation model. If 𝛼 = 0 , the algorithm becomes a pure
reedy algorithm, so we need to reasonably optimize. Next, we need to
pdate the pheromone on each path. The update formula is as follows: 

𝑡 +1 
𝑢𝑣 

= (1 − 𝜌) 𝜏𝑡 
𝑢𝑣 

+ Δ𝜏𝑡 
𝑢𝑣 

(3) 

After an ant travels a path, the original pheromone on the edge
ill gradually evaporate over time, but each ant will leave additional
heromones after choosing this path. Therefore, we use 𝜌 ∈ (0 , 1] to rep-
esent the evaporation coefficient of the pheromone on each edge, Δ𝜏𝑡 

𝑢𝑣 

epresents the increment of the pheromone between paths 𝑢 and 𝑣, and
e use the following publicity: 

𝜏𝑡 
𝑢𝑣 

= 

𝑚 ∑
𝑘 =1 

Δ𝜏𝑡 
𝑢𝑣 
( 𝑘 ) (4) 

Where Δ𝜏𝑡 
𝑢𝑣 

is the pheromone increment released by ant 𝑘 between
dges 𝑢 and 𝑣 . The value of Δ𝜏𝑡 

𝑢𝑣 
( 𝑘 ) is defined differently in different ant

olony models. In this paper, we define it as follows: 

𝜏𝑡 
𝑢𝑣 
( 𝑘 ) = 

∑
𝑣 ∈𝐿 ( 𝑘 ) 

𝑑 1 ( 𝑣 ) 𝑖 ⋅ 𝑑 2 ( 𝑣 ) 𝑗 (5) 

Where 𝑑 1 ( 𝑣 ) is the degree of node 𝑣, 𝑑 2 ( 𝑣 ) is the number of all second-
rder neighbors of node 𝑣, and 𝑖 and 𝑗 are the coefficients between them.

ants form a path in the process of each iteration. After this process,
hey return to the starting point and continue to repeat the process. After
everal iterations, the ant starting from each node will eventually form
 path. We call it the critical path of the negative influence node, and
hen it will eventually form |𝑆 | critical paths. 
𝑁 
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Fig. 3. Illustration of Deepwalk method. Deepwalk first samples the node sequence in the graph by random walks on the original network 𝐺, and then learns the 
embedding through the Skip-gram model. The leftmost is the original input network graph, and the rightmost is the output result. It can be seen that the relationship 
between the close nodes in the original graph is also well presented in the two-dimensional plane after embedding by DeepWalk. 
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Fig. 4. Example of training set generation. 
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.2.3. Calculation of heuristic factors 

In the process of calculating the heuristic factor, firstly, we use the
eepwalk based graph embedding method and take the original net-
ork as the input to obtain the vector representation of the vertices in

he network [33] . Finally, the similarity between nodes is calculated
s the heuristic factor of the ant colony algorithm. The graph embed-
ing method of Deepwalk mainly learns the social representation of a
etwork by truncated random walk. Its purpose is to map the network
odel to a low dimensional vector space, so that it can retain the struc-

ural information and potential characteristics of the graph model, and
ore hidden features can play an important role in the future influence

ommunication task. The schematic diagram of the Deepwalk is shown
n Fig. 3 . 

As can be seen from Fig. 3 , Deepwalk is mainly composed of two
arts: random walk and generating representation vector. In the process
f random walk, let a particle start from node 𝑢 at time 𝑡, and define
𝑡 ( 𝑢, 𝑣 ) as the probability that the particle just walks to node 𝑣 at time
 + 1 , then the system evolution equation can be obtained: 

𝑡 ( 𝑢, 𝑣 ) = 𝑃 𝜋𝑡 ( 𝑢 ) , 0 ≤ 𝑡 ≤ 𝑙 (6) 

Where 𝜋0 ( 𝑢 ) is a vector of 𝑁 × 1 , only the 𝑢 th element is 1, and the
ther elements are 0. 𝑃 = [ 𝑝 ( 𝑢, 𝑣 )] , 𝑝 ( 𝑢, 𝑣 ) = 𝑎 ( 𝑢, 𝑣 )∕ 𝑘 ( 𝑢 ) . 𝑎 ( 𝑢, 𝑣 ) is the ele-
ent in adjacency matrix 𝐴, and 𝑘 ( 𝑢 ) is the degree of node 𝑢 . Through

his step, each node 𝑢 generates a sequence 𝑊 𝑢 with a path length of 𝑙
ccording to the random walk strategy. 

Then, with the help of the idea of natural language processing, the
ertex path 𝑊 𝑢 obtained by random walk is regarded as a sentence com-
osed of words. Here, we use Google’s word2vec tool, then, select the
kip-gram model and take the one hot vector of random walk vertices
s the input, and finally get the 𝑑-Dimension vector of each vertex [34] .

Let’s illustrate this step with an example. If we make the number of
odes in the network 𝑁, then all our nodes are numbered with 1- 𝑁 . For
xample, node 3 generates a sequence with a path length of 10 according
o the random walk strategy, which is 𝑊 𝑢 3 

= { 3 , 10 , 4 , 5 , 7 , 9 , 1 , 25 , 33 , 13 } .
hen, first, we choose 4 in the sequence as our input word; after having

nput word, we define a parameter 𝑤 called window size, which repre-
ents the number of words we select from the left or right of the current
nput word. If 𝑤 = 2, we can finally get the words in the window as
3,10,4,5,7]. Therefore, we will get four groups of training data in the
orm of (input word, output word), namely (4,3), (4,10), (4,5), (4,7).
he schematic diagram is shown in Fig. 4 . 

The blue box is the input word and the window size is 2. Finally,
e build a neural network based on the training data. Based on these

raining data, the neural network will output a probability distribution
o show how likely each word in the dictionary is to appear at the same
ime as input word. For example, if the probability of 10 and 4 in the
utput probability of the final model is large, it indicates that 10 and 4
re highly correlated. Specifically, we can build a vocabulary with size
5 
based on all nodes. If We assume that node 4 is the input word, it
an be represented by a matrix 𝐼 = [0,0,0,1,0,...,0] of 1-dimensional 𝑁
olumns, where node 4 is set to 1 and the rest is 0. We take it as an in-
ut vector. Then, if the input of the model is an 𝑁-dimensional vector,
he output is also an 𝑁-dimensional vector, which contains 𝑁 probabil-
ties. Each probability represents the probability that the current word
s output word in the input sample. The structure of the neural network
s shown in Fig. 5 . 

In this paper, we set 10 features to represent a word, then the weight
atrix of the hidden layer should be 𝑛 rows and 10 columns, that is, the
idden layer has 10 nodes. Therefore, the main purpose of this model
s to obtain the weight matrix of hidden layer in the neural network
hrough neural network training. 

Finally, we obtain the abscissa and ordinate of all nodes on the plane
raph through graph embedding. We calculate the Euclidean distance
etween any two points and normalize it as the heuristic factor of the
nt colony algorithm. 

. Result and discussion 

.1. Data set 

We validate the algorithm using six different data sets, including an
R random network generated by computer simulations and five real
ata sets with community structure: Karate, Soccer, Wiki, Soc, and Email
 http://snap.stanford.edu/data/ ). According to the tightness of the con-
ection between different nodes in the network, the five real data sets
egard the network as composed of different communities, in which the
onnection between nodes in the community is closer, and the links be-
ween nodes in different communities are sparse. Among them, Karate
ata set is a social network describing the friendship between 34 mem-
ers of American university karate club in the 1970s. The football data
et is a social network created for American football matches between
merican universities during the fall regular season of 2000. In the wiki
ata set, if a web page node has a link to other web page nodes, it is
onsidered that there is an edge between the two web pages. Soc is who-

http://snap.stanford.edu/data/
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Fig. 5. The architecture of the Skip-gram mod- 
ule. 

Table 2 

The topological properties of six different data sets. 

Data sets 𝑁 𝐸 𝐷 max 𝐷 𝐴 𝐶 𝐶 𝐷𝐸

Synthetic 81 246 11 5.66 0.175 0.066 
Karate 34 78 17 4.59 0.588 0.139 
Football 115 613 12 10.66 0.403 0.094 
Wiki 2405 8591 250 7.14 0.246 0.003 
Soc 3783 14,124 511 7.47 0.277 0.002 
Email 1005 16,706 374 33.25 0.473 0.033 
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rusts-whom network of people who trade using Bitcoin on a platform
alled Bitcoin Alpha. Email data set represents the core of the email-
uAll network, which also contains links between members of the insti-
ution and people outside of the institution. 

Table 2 shows the topological properties of different data sets, where
is the total number of nodes in the data set, 𝐸 is the total number of

dges between nodes in the network, 𝐷 max is the number of nodes with
he most degrees out of all nodes, and 𝐷 𝐴 is the average degree of all
odes. 𝐶 𝐶 is the clustering coefficient indicating the degree of cluster-
ng of nodes in the network. The higher the aggregation coefficient, the
loser the connection between nodes. 𝐷𝐸 is the network density, in-
icating the ratio between the actual number of connections and the
ossible number of connections between nodes. The higher the network
ensity, the denser the connections between nodes. 

.2. Result analysis of graph embedding 

In the heuristic factor calculation of the ant colony algorithm, we
rst perform Deepwalk operation on the original network diagram, and
he experimental results are shown in Figs. 6 and 7 . 

Among them, Fig. 6 is the topology of the original network. In this
gure, we use the same color to represent the nodes belonging to the
ame community, but the hidden relationship between nodes is not com-
letely expressed through the topology. For example, the relationship
etween different nodes in the same community is only measured by
ne edge, which does not show the hidden information such as the tight-
ess of nodes. Figure 7 is a vertex vector graph obtained by the graph
mbedding method of Deepwalk. It can be seen from the graph that the
etwork model is mapped to a low-dimensional vector space, retaining
he structural information and potential characteristics of the original
raph model. These hidden features will play an important role in the
esign of the influence communication model. 

Next, we calculate the Euclidean distance between any nodes ac-
ording to the vector, and then set the heuristic factor between nodes
hrough the Euclidean distance. Among them, Deepwalk learns the so-
ial representation of a network by truncating random walk, which can
6 
lso get better results when there are few network annotation vertices.
ecause the random walk process can be processed in parallel. For a

arge network, we can start a certain length of random walk at different
ertices at the same time, and multiple random walks can be carried out
t the same time, which can reduce the sampling time. In addition, the
volution of the network is usually the change of local points and edges,
hich will only affect some random walk paths. Therefore, it is not nec-

ssary to recalculate the random walk of the whole network every time
n the process of network evolution. Therefore, the graph embedding
ethod has certain adaptability. 

.3. Analysis of influence propagation suppression results 

In order to verify the performance of the proposed algorithm, we
ompare the proposed algorithm with five other classical algorithms.
he five algorithms are: Random algorithm, DegreeCentrality algorithm,
ageRank algorithm [35] , CI algorithm [4] and 𝐾-core algorithm [36] .
mong them, the Random algorithm is one of the commonly used com-
arative experiments for influence suppression, which suppresses the
et of seed nodes by randomly selecting 𝑘 nodes in the network as the
et of seed nodes. The DegreeCentrality algorithm sorts all nodes based
n their degree, the higher the degree, the higher the influence. The
lgorithm selects the node with the highest degree among all nodes to
oin the seed set in each round until the number of nodes reaches 𝑘 .
he PageRank algorithm calculates the PageRank value of each node
hrough the connection relationship of the nodes in the network, and
hen sorts its importance according to the size of the value. CI algo-
ithm is a scalable algorithm that takes into account collective impact
ffects. 𝐾-core algorithm assigns an integer index or coreness to each
ode, representing its location according to successive layers in the net-
ork. 

In Eq. (1) , the goal of the algorithm is to select a positive seed set 𝑠 ∗ 

o minimize 𝐼( 𝑆 𝑁 

, 𝑆 

∗ ) . In order to reflect the suppression effect of neg-
tive information propagation, this paper defines the suppression effect
f the algorithm as 𝑁 𝑃 = 𝐼( 𝑆 𝑁 

, ∅) − 𝐼( 𝑆 𝑁 

, 𝑆 𝑃 ) , that is, the suppression
ffect of the suppression node set is the average negative node activa-
ion number of the network without the suppression node set minus
he average negative node activation number of the network under the
ction of the suppression node set. In order to ensure the experimental
ffect, each algorithm is performed 1000 times, and the average value is
btained and two decimal places are retained as the final expected sup-
ression effect. For each network, we randomly select 5% of the nodes
rom the network to generate a negative seed set 𝑆 𝑁 

, select the value of
he suppression node set 𝑆 𝑃 according to the size of the network, and
ompare the suppression effects of the six algorithms. The experimental
esults are shown in Fig. 8 , 𝑆 𝑃 is the number of suppression nodes and
he 𝑁 is the expected suppression effect of the suppression node set. 
𝑃 
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Fig. 6. Visualization diagrams of six different 
networks. 

Fig. 7. Two dimensional graph of six different networks after graph embedding operation. 
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It can be seen from Fig. 8 that in the synthetic data set, the key
odes selected by the algorithm in this paper have better suppression
ffect in the network. For example, when we set the number of suppres-
ion nodes to 5, Random, DegreeCentrality, PageRank, 𝐾-core and CI
lgorithms affect about 52 nodes, 56 nodes, 58 nodes, 42 nodes and 53
odes, respectively, while the ACO-GE algorithm can affect 63 nodes. 

Similarly, in the real data sets, the algorithm in this paper can also
chieve better performance. For example, in the Karate data set with
 small number of nodes, when the number of suppression nodes is 8,
andom, DegreeCentrality, PageRank, 𝐾-core and CI algorithms affect
bout 18 nodes, 20 nodes, 19 nodes, 19 nodes and 20 nodes, respec-
ively, while the ACO-GE algorithm can affect about 22 nodes. In the
7 
iki data set with a large number of nodes, when the number of sup-
ression nodes is 3, Random, DegreeCentrality, PageRank, 𝐾-core and
I algorithms affect about 273 nodes, 584 nodes, 627 nodes, 401 nodes
nd 277 nodes, respectively, while the ACO-GE algorithm proposed in
his paper can affect about 656 nodes. 

It can be seen that Random algorithm randomly selects nodes with-
ut considering the network topology, which has poor effect on the
ata set with community structure. In addition, the DegreeCentrality
lgorithm considers the local topology characteristics of the network,
nd the PageRank algorithm focuses on the edge relationship between
odes. They perform well on small data sets, but behave generally on
arge data sets. Whether it is a small data set or a large data set, the
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Fig. 8. The change trend of the number of nodes that can be suppressed by different algorithms with the increase of the number of suppressed nodes in different 
data sets. 
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nfluence suppression effect of the algorithm proposed in this paper is
elatively good. Therefore, the ACO-GE algorithm has better robustness
nd scalability. 

.4. Cost performance analysis of suppression nodes 

In the process of negative influence propagation, it is necessary to
elect nodes with high cost performance as the suppression node set,
o as to maximize the suppression of influence with limited cost. For
xample, in real-world social platforms, social accounts with more fans
ay have greater influence. If such accounts want to spread some in-

ormation, it needs a high cost. Therefore, we need to consider how to
btain the maximum influence effect with limited cost. According to the
revious description of social networks, we define the cost of node 𝑣 as
ollows: 

𝑜𝑠𝑡 ( 𝑣 ) = 𝑘 ( 𝑣 )∕ 𝑑 max (7) 

Where 𝑘 ( 𝑣 ) is the degree of node 𝑣 and 𝑑 max is the maximum degree
f node among all nodes. It can be seen that the cost value of node 𝑣 is
irectly proportional to the degree of the node. The greater the degree
f the node, the higher the cost of selecting the node as the node to
uppress the node. Similarly, for each network, 5% nodes are randomly
elected from the network as the initial negative seed set, and the ex-
ected suppression effects of the six algorithms under different costs are
alculated. In order to reduce the experimental error, 1000 times are
arried out for each algorithm under each cost, and the average value is
aken as the final expected suppression effect. Figures 9 and 10 show the
ost performance comparison results of suppression nodes of different
lgorithms in different data sets. 

As can be seen from Fig. 9 , the suppression effect of each algorithm
ncrease with the increase of the total cost of suppression nodes. How-
ver, the ACO-GE algorithm has the highest suppression effect under
he same cost. At the same time, the ACO-GE algorithm has the low-
st cost within the same suppression effect. For example, in the karate
ata set, when the suppression set cost is 2.0, the suppression effects
f the Random, DegreeCentrality, PageRank, 𝐾-core, and CI algorithms
re 18 nodes, 16 nodes, 15 nodes, 19 nodes, and 16 nodes, respectively,
hile the suppression effect of the ACO-GE algorithm is 21 nodes. When
8 
he suppression effect is 21, the cost of the Random, DegreeCentrality,
ageRank, 𝐾-core, and CI algorithms are 3.0, 4.0, 4.5, 2.5, and 4.0, re-
pectively, while the cost of the ACO-GE algorithm is only 2.0. 

In Random algorithm, the total cost of restraining nodes is directly
roportional to the average degree of network nodes, so the total cost
ncreases linearly with the increase of the number of restraining nodes.
herefore, in Fig. 10 , we only compare the other five algorithms. It can
e seen from the figure that the total cost of DegreeCentrality algorithm
nd PageRank algorithm is similar and higher than that of ACO-GE al-
orithm. When selecting the suppression set, each algorithm tends to
elect the nodes with high cost first, so the slope of the curve shows
 decreasing trend. Because the degree difference of each node in syn-
hetic data set and football data set is small, and the cost difference of
ach node is small, the total cost of the five algorithms is almost linear.

Overall, the cost per node selected by the Random algorithm is ap-
roximately equal to the average cost of the network nodes. Degree-
entrality algorithm often selects the node with the largest cost, so its
ost performance is low. The PageRank algorithm does not deliberately
hoose high-degree nodes, and its performance is higher than that of
he random and DegreeCentrality algorithm. The high scalability of the
I algorithm is able to find the most influence nodes in the big data so-
ial networks. The 𝐾-core algorithm is a layered operation to determine
he importance of the nodes in the network. Compared with traditional
lgorithms that do not consider the cost effectiveness of nodes, the ACO-
E algorithm uses the positive feedback mechanism of the ant colony
lgorithm to avoid selecting nodes exclusively according to their degree
f performance. Therefore, the algorithm has the best combined effect
n selecting nodes with limited cost. 

.5. Comparative analysis of community blocking effects of algorithms 

Finally, we also compare the blocking effects of different algorithms
n the network. Because many real networks tend to have community
tructure, the performance of different suppression algorithms for nega-
ive information interception determines whether the negative influence
an spread from the source community to other communities. Therefore,
e also need to evaluate the suppression effect of different algorithms

n different communities. For example, during the epidemic period, if
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Fig. 9. The trend of the maximum number of nodes that can be affected by the suppression nodes selected by different algorithms changes with the increase of cost. 

Fig. 10. The trend of the cost of different algorithms changes with the increase of the number of suppression nodes. 
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he epidemic spread can be limited to a few communities, medical re-
ources can be used intensively, so as to save a lot of medical resources
nd reduce the burden of community workers. In detail, if there are two
ifferent suppression methods, after blocking the spread of negative in-
uence, although the number of nodes affected by negative influence is
imilar, the nodes affected by negative influence of the first algorithm
re mainly scattered in different communities, while the nodes affected
y negative influence of the second algorithm are mainly concentrated
n individual communities, Then, we think that the second algorithm
as better community blocking effect, because the second method can
void the further radiation and diffusion of negative influence in the
etwork in the next time. The total number of negative nodes in the
9 
etwork reflects the algorithm’s blocking effect on negative influence,
hile the number of communities with negative nodes in the network

eflects the algorithm’s community blocking effect. 
For each network, we randomly select 4% of nodes from a specific

ommunity as the initial negative seed set and then compare the ef-
ect of different suppression algorithms and the propagation of negative
nfluence without taking any measures. In order to reduce the exper-
mental error, each algorithm performs 1000 times, and the average
alue is taken as the expected result. From Fig. 8 , we can see that the
umber of nodes affected by each algorithm is less when the 𝑘 of the
uppression set is too small, and the number of nodes affected by each
lgorithm tends to be the same when the 𝑘 is too large. Therefore, in
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Table 3 

The blocking effect results of various algorithms in different data sets. 

Data sets Method NM NMR NO NOR NIC NA NAR 

Synthetic No measures 19.33 87.86% 43.97 67.65% 2.56 63.30 72.76% 

Random 14.46 65.73% 3.38 5.21% 1.77 17.84 20.51% 

DegreeCentrality 13.53 61.50% 0.59 0.90% 1.21 14.18 16.30% 

Pagerank 13.78 62.64% 0.38 0.58% 1.15 14.16 16.28% 

CI 15.00 68.18% 0.48 0.73% 1.29 15.48 17.79% 

𝐾-core 14.81 67.32% 3.29 5.05% 1.71 18.10 20.80% 

ACO-GE 8.05 36.59% 0.35 0.54 % 1.09 8.40 9.66% 

Karate No measures 8.61 71.75% 16.37 74.41% 3.83 24.98 73.47% 

Random 4.43 36.92% 3.16 14.36% 2.69 7.59 23.32% 

DegreeCentrality 3.41 28.42% 1.86 8.45% 1.85 5.27 15.50% 

Pagerank 3.28 27.33% 1.58 7.18% 1.79 4.86 14.29% 

CI 4.51 37.58% 1.36 6.18% 2.13 5.87 17.26% 

𝐾-core 2.99 24.92% 3.97 18.05% 2.33 6.96 20.47% 

ACO-GE 3.67 30.58% 0.26 1.18% 1.26 3.93 11.56% 

Football No measures 15.10 88.82% 80.91 82.56% 11.84 96.01 83.49% 

Random 11.01 64.76% 20.69 21.11% 8.63 31.70 27.57% 

DegreeCentrality 8.68 51.06% 15.13 15.44% 6.92 23.81 20.70% 

Pagerank 9.07 53.35% 15.20 15.51% 7.03 24.27 21.10% 

CI 9.73 57.24% 14.24 14.53% 7.15 23.97 20.84% 

𝐾-core 10.31 60.65% 26.5 27.04% 8.89 36.81 32.01% 

ACO-GE 11.62 68.35% 12.15 12.40% 6.54 23.77 20.67% 

Wiki No measures 188.26 37.80% 605.15 31.73% 16.69 793.41 32.99% 

Random 84.47 16.96% 316.77 13.17% 13.92 401.24 16.68% 

DegreeCentrality 36.48 7.33% 35.91 1.88% 8.80 72.39 3.01% 

Pagerank 29.38 5.89% 38.46 2.02% 8.92 65.84 2.73% 

CI 26.77 5.38% 42.15 2.21% 9.85 68.92 2.87% 

𝐾-core 53.23 10.69% 139.54 7.32% 11.85 192.78 8.02% 

ACO-GE 25.61 5.14% 34.28 1.79% 8.52 59.89 2.49% 

Soc No measures 104.57 18.91% 871.14 26.97% 5.71 975.71 25.79% 

Random 61.05 11.06% 423.57 13.11% 5.18 484.62 12.81% 

DegreeCentrality 11.85 2.13% 49.57 1.53% 3.97 61.42 1.62% 

Pagerank 14.43 2.61% 52.14 1.62% 3.86 66.57 1.76% 

CI 17.13 3.16% 39.16 1.22% 4.29 56.29 1.50% 

𝐾-core 13.28 2.40% 55.17 1.71% 4.14 68.42 1.80% 

ACO-GE 9.41 1.71% 33.58 1.02% 3.48 42.99 1.14% 

Email No measures 197.23 55.56% 347.69 53.49% 5.83 544.92 54.22% 

Random 52.69 14.84% 73.15 11.25% 5.38 125.85 12.52% 

DegreeCentrality 11.31 3.19% 9.38 1.44% 2.87 20.69 2.06% 

Pagerank 9.15 2.56 % 9.77 1.50% 3.03 18.92 1.88% 

CI 10.92 3.08% 8.38 1.29% 3.15 19.31 1.92% 

𝐾-core 11.69 3.29% 10.85 1.67% 3.23 22.54 2.24% 

ACO-GE 9.38 2.64% 7.69 1.18% 2.39 17.08 1.70% 
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his experiment, the 𝑘 of the suppression set of the Wiki data set is 5,
nd the 𝑘 of the suppression set of the other data sets is 10. The block-
ng effects of various algorithms are shown in Table 3 . Among them,
 𝑀 and 𝑁 𝑀 𝑅 are the number and proportion of affected nodes in the

ommunity where the initial negative node is located, respectively; 𝑁𝑂

nd 𝑁𝑂𝑅 are the number and proportion of nodes affected by nega-
ive influence in other communities respectively; 𝑁 𝐼 𝐶 is the number
f communities containing negative nodes; 𝑁𝐴 and 𝑁𝐴𝑅 are the num-
er and proportion of nodes affected by negative influence in the whole
etwork, respectively. 

Table 3 shows that the ACO-GE algorithm has the best inter-
ommunity blocking ability, the DegreeCentrality algorithm and the
ageRank algorithm have similar effects, and the Random algorithm has
he worst effect. The suppression set selected by different algorithms af-
ects different communities. The ACO-GE algorithm can effectively pre-
ent the spread of negative influence from the source community of
egative influence to other healthy communities. For example, in the
arate data set, the suppression effect of ACO-GE in the source commu-
ity of negative influence is less than the DegreeCentrality algorithm
nd PageRank algorithm, but the suppression effect in other communi-
ies is better, which effectively prevents the spread of negative influence
n the network. 

In summary, the ACO-GE algorithm takes into account the global
opology of the network, and has the best community blocking effect
hile suppressing negative influence nodes. Therefore, the comprehen-
h  

10 
ive performance of the ACO-GE algorithm is better than the other five
lgorithms. 

. Conclusion 

Influence maximization of complex networks is an important re-
earch topic in social network analysis. When the principle of network
ommunication is unknown, how to effectively suppress the negative
mpact is particularly important. Swarm intelligence is a simulation of
olony behaviors such as ants and birds in the biological world, as well
s a process of foraging between groups by means of cooperation. Indi-
iduals in the group search for the direction of the path through learn-
ng from themselves and between individuals, therefore, they can form
 more powerful overall ability. 

This paper combines the spread process of influence with ant colony
oraging behavior, and simulates the spread of negative influence in
omplex networks through ant path selection. In the process of mu-
ual cooperation, these individuals build the swarm intelligence through
heir relationship so that they can seek the optimal solution to complex
roblems based on ant colony intelligence in cyberspace, that is, find-
ng a group of high-value and Low-cost suppression node. In the process
f model design, we map the original network into a low-dimensional
ector through the graph embedding technology, capture the topology
f the original network and the relationship between nodes, get more
otential information between nodes, and use it as the metric for the
euristic factor of ant colony algorithm. Experiments show that this al-
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orithm can effectively suppress the spread of negative influence in the
hole network with limited cost and in the network with community

tructure. The suppression effect is community blocking, which can con-
entrate on the spread of negative influence in individual communities
nd avoid the wireless increase of community coverage of negative in-
uence. Therefore, the research of this paper can not only enrich the
heoretical research results of influence maximization, but also play an
mportant role in the fields of network topology analysis, epidemic pre-
ention and control, rumor propagation and so on. 
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